Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Viral Immunol ; 37(3): 167-175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38574259

ABSTRACT

Zika virus (ZIKV) is an emerging flavivirus associated with several neurological diseases such as Guillain-Barré syndrome in adults and microcephaly in newborn children. Its distribution and mode of transmission (via Aedes aegypti and Aedes albopictus mosquitoes) collectively cause ZIKV to be a serious concern for global health. High genetic homology of flaviviruses and shared ecology is a hurdle for accurate detection. Distinguishing infections caused by different viruses based on serological recognition can be misleading as many anti-flavivirus monoclonal antibodies (mAbs) discovered to date are highly cross-reactive, especially those against the envelope (E) protein. To provide more specific research tools, we produced ZIKV E directed hybridoma cell lines and characterized two highly ZIKV-specific mAb clones (mAbs A11 and A42) against several members of the Flavivirus genus. Epitope mapping of mAb A11 revealed glycan loop specificity in Domain I of the ZIKV E protein. The development of two highly specific mAbs targeting the surface fusion protein of ZIKV presents a significant advancement in research capabilities as these can be employed as essential tools to enhance our understanding of ZIKV identification on infected cells ex vivo or in culture.


Subject(s)
Aedes , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Infant, Newborn , Humans , Viral Envelope Proteins , Antibodies, Monoclonal , Antibodies, Neutralizing , Antibodies, Viral
2.
Emerg Microbes Infect ; 13(1): 2301666, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38163752

ABSTRACT

In the past few decades, several emerging/re-emerging mosquito-borne flaviviruses have resulted in disease outbreaks of public health concern in the tropics and subtropics. Due to cross-reactivities of antibodies recognizing the envelope protein of different flaviviruses, serosurveillance remains a challenge. Previously we reported that anti-premembrane (prM) antibody can discriminate between three flavivirus infections by Western blot analysis. In this study, we aimed to develop a serological assay that can discriminate infection or exposure with flaviviruses from four serocomplexes, including dengue (DENV), Zika (ZIKV), West Nile (WNV) and yellow fever (YFV) viruses, and explore its application for serosurveillance in flavivirus-endemic countries. We employed Western blot analysis including antigens of six flaviviruses (DENV1, 2 and 4, WNV, ZIKV and YFV) from four serocomplexes. We tested serum samples from YF-17D vaccinees, and from DENV, ZIKV and WNV panels that had been confirmed by RT-PCR or by neutralization assays. The overall sensitivity/specificity of anti-prM antibodies for DENV, ZIKV, WNV, and YFV infections/exposure were 91.7%/96.4%, 91.7%/99.2%, 88.9%/98.3%, and 91.3%/92.5%, respectively. When testing 48 samples from Brazil, we identified multiple flavivirus infections/exposure including DENV and ZIKV, DENV and YFV, and DENV, ZIKV and YFV. When testing 50 samples from the Philippines, we detected DENV, ZIKV, and DENV and ZIKV infections with a ZIKV seroprevalence rate of 10%, which was consistent with reports of low-level circulation of ZIKV in Asia. Together, these findings suggest that anti-prM antibody is a flavivirus serocomplex-specific marker and can be employed to delineate four flavivirus infections/exposure in regions where multiple flaviviruses co-circulate.


Subject(s)
Dengue Virus , Dengue , Flavivirus Infections , Flavivirus , Zika Virus Infection , Zika Virus , Animals , Flavivirus/genetics , Zika Virus Infection/diagnosis , Zika Virus Infection/epidemiology , Zika Virus/genetics , Dengue Virus/genetics , Seroepidemiologic Studies , Antibodies, Viral , Flavivirus Infections/diagnosis , Flavivirus Infections/epidemiology , Yellow fever virus , Cross Reactions
3.
NPJ Vaccines ; 8(1): 172, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932282

ABSTRACT

The flavivirus envelope protein is a class II fusion protein that drives flavivirus-cell membrane fusion. The membrane fusion process is triggered by the conformational change of the E protein from dimer in the virion to trimer, which involves the rearrangement of three domains, EDI, EDII, and EDIII. The movement between EDI and EDII initiates the formation of the E protein trimer. The EDI-EDII hinge region utilizes four motifs to exert the hinge effect at the interdomain region and is crucial for the membrane fusion activity of the E protein. Using West Nile virus (WNV) NY99 strain derived from an infectious clone, we investigated the role of eight flavivirus-conserved hydrophobic residues in the EDI-EDII hinge region in the conformational change of E protein from dimer to trimer and viral entry. Single mutations of the E-A54, E-I130, E-I135, E-I196, and E-Y201 residues affected infectivity. Importantly, the E-A54I and E-Y201P mutations fully attenuated the mouse neuroinvasive phenotype of WNV. The results suggest that multiple flavivirus-conserved hydrophobic residues in the EDI-EDII hinge region play a critical role in the structure-function of the E protein and some contribute to the virulence phenotype of flaviviruses as demonstrated by the attenuation of the mouse neuroinvasive phenotype of WNV. Thus, as a proof of concept, residues in the EDI-EDII hinge region are proposed targets to engineer attenuating mutations for inclusion in the rational design of candidate live-attenuated flavivirus vaccines.

4.
medRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37808865

ABSTRACT

In the past few decades, several emerging/re-emerging mosquito-borne flaviviruses have resulted in disease outbreaks of public health concern in the tropics and subtropics. Due to cross-reactivities of antibodies recognizing the envelope protein of different flaviviruses, serosurveillance remains a challenge. Previously we reported that anti-premembrane (prM) antibody can discriminate between three flavivirus infections by Western blot analysis. In this study, we aimed to develop a serological assay that can discriminate infection or exposure with flaviviruses from four serocomplexes, including dengue (DENV), Zika (ZIKV), West Nile (WNV) and yellow fever (YFV) viruses, and explore its application for serosurveillance in flavivirus-endemic countries. We employed Western blot analysis including antigens of six flaviviruses (DENV1, 2 and 4, WNV, ZIKV and YFV) from four serocomplexes. We tested serum samples from YF-17D vaccinees, and from DENV, ZIKV and WNV panels that had been confirmed by RT-PCR or by neutralization assays. The overall sensitivity/specificity of anti-prM antibodies for DENV, ZIKV, WNV, and YFV infections/exposure were 91.7%/96.4%, 91.7%/99.2%, 88.9%/98.3%, and 91.3%/92.5%, respectively. When testing 48 samples from Brazil, we identified multiple flavivirus infections/exposure including DENV and ZIKV, DENV and YFV, and DENV, ZIKV and YFV. When testing 50 samples from the Philippines, we detected DENV, ZIKV, and DENV and ZIKV infections with a ZIKV seroprevalence rate of 10%, which was consistent with reports of low-level circulation of ZIKV in Asia. Together, these findings suggest that anti-prM antibody is a flavivirus serocomplex-specific marker and can be employed to delineate four flavivirus infections/exposure in regions where multiple flaviviruses co-circulate.

5.
Vector Borne Zoonotic Dis ; 23(12): 645-652, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37672628

ABSTRACT

Background: Japanese encephalitis virus (JEV) is a mosquito-borne zoonotic flavivirus and the leading cause of pediatric encephalitis in the Asian Pacific region. The transmission cycle primarily involves Culex spp. mosquitoes and Ardeid birds, with domestic pigs (Sus scrofa domestica) being the source of infectious viruses for the spillover of JEV from the natural endemic transmission cycle into the human population. Although many studies have concluded that domestic pigs play an important role in the transmission cycle of JEV, and infection of humans, the role of feral pigs in the transmission of JEV remains unclear. Since domestic and feral pigs are the same species, and because feral pig populations in the United States are increasing and expanding geographically, the current study aimed to test the hypothesis that if JEV were introduced into the United States, feral pigs might play a role in the transmission cycle. Materials and Methods: Sinclair miniature pigs, that exhibit the feral phenotype, were intradermally inoculated with JEV genotype Ib. These pigs were derived from crossing miniature domestic pig with four strains of feral pigs and were used since obtaining feral swine was not possible. Results: The Sinclair miniature pigs became viremic and displayed pathological outcomes similar to those observed in domestic swine. Conclusion: Based on these findings, we conclude that in the event of JEV being introduced into the United States, feral pig populations could contribute to establishment and maintenance of a transmission cycle of JEV and could lead to the virus becoming endemic in the United States.


Subject(s)
Culex , Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Animals , Swine , Humans , Child , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/veterinary , Swine, Miniature , Birds , Phenotype
6.
Vector Borne Zoonotic Dis ; 23(5): 273-274, 2023 05.
Article in English | MEDLINE | ID: mdl-37172284
8.
Viral Immunol ; 36(1): 41-47, 2023 01.
Article in English | MEDLINE | ID: mdl-36622942

ABSTRACT

Cache Valley virus (CVV) is a mosquito-borne bunyavirus that is enzootic throughout the new world. Although CVV is known as an important agricultural pathogen, primarily associated with embryonic lethality and abortions in ruminants, it has recently been recognized for its expansion as a zoonotic pathogen. With the increased emergence of bunyaviruses with human and veterinary importance, there have been significant efforts dedicated to the development of bunyavirus vaccines. In this study, the immunogenicity of a candidate live-attenuated vaccine (LAV) for CVV, which contains the deletion of the nonstructural small (NSs) and nonstructural medium (NSm) genes (2delCVV), was evaluated and compared with an autogenous candidate vaccine created through the inactivation of CVV using binary ethylenimine (BEI) with an aluminum hydroxide adjuvant (BEI-CVV) in sheep. Both 2delCVV and BEI-CVV produced a neutralizing antibody response that exceeds the correlate of protection, that is, plaque reduction neutralization test titer >10. However, on day 63 postinitial immunization, 2delCVV was more immunogenic than BEI-CVV. These results warrant further development of 2delCVV as a candidate LAV and demonstrate that the double deletion of the NSs and NSm genes can be applied to the development of vaccines and as a common attenuation strategy for orthobunyaviruses.


Subject(s)
Bunyamwera virus , Viral Vaccines , Pregnancy , Female , Animals , Humans , Sheep , Bunyamwera virus/physiology , Vaccines, Attenuated , Vaccines, Inactivated , Antibodies, Neutralizing
9.
Viral Immunol ; 36(1): 33-40, 2023 01.
Article in English | MEDLINE | ID: mdl-36399689

ABSTRACT

Rift Valley fever virus (RVFV) is an emerging arbovirus that affects both ruminants and humans. RVFV causes severe and recurrent outbreaks in Africa and the Arabian Peninsula with a significant risk for emergence into new locations. Although there are a variety of RVFV veterinary vaccines for use in endemic areas, there is currently no licensed vaccine for human use; therefore, there is a need to develop and assess new vaccines. Herein, we report a live-attenuated recombinant vaccine candidate for RVFV, based on the previously described genomic reconfiguration of the conditionally licensed MP12 vaccine. There are two general strategies used to develop live-attenuated RVFV vaccines, one being serial passage of wild-type RVFV strains to select attenuated mutants such as Smithburn, Clone 13, and MP12 vaccine strains. The second strategy has utilized reverse genetics to attenuate RVFV strains by introducing deletions or insertions within the viral genome. The novel candidate vaccine characterized in this report contains a two-segmented genome that lacks the medium viral segment (M) and two virulence genes (nonstructural small and nonstructural medium). The vaccine candidate, named r2segMP12, was evaluated for the production of neutralizing antibodies to RVFV in outbred CD-1 mice. The immune response induced by the r2segMP12 vaccine candidate was directly compared to the immune response induced by the rMP12 parental strain vaccine. Our study demonstrated that a single immunization with the r2segMP12 vaccine candidate at 105 plaque-forming units elicited a higher neutralizing antibody response than the rMP12 vaccine at the same vaccination titer without the need for a booster.


Subject(s)
Rift Valley Fever , Rift Valley fever virus , Viral Vaccines , Humans , Animals , Mice , Rift Valley fever virus/genetics , Rift Valley Fever/prevention & control , Rift Valley Fever/epidemiology , Vaccines, Attenuated/genetics , Viral Vaccines/genetics , Antibodies, Neutralizing
10.
Vector Borne Zoonotic Dis ; 22(11): 529-534, 2022 11.
Article in English | MEDLINE | ID: mdl-36354964

ABSTRACT

Japanese encephalitis virus (JEV) continues to cause significant numbers of human infections and fatalities despite the availability of efficacious vaccines. It is regarded as an emerging mosquito-borne pathogen with the potential of introduction into many countries. In 2022, JEV was detected in Australia on a hitherto unprecedented scale, with local transmission by indigenous mosquitoes to amplifying swine hosts and to humans. In this study, we review this recent disease activity, propose possible routes of virus movement, ecological drivers of activity, and consider possible future transmission scenarios. Measures to enhance current surveillance systems and potential strategies for health authorities to minimize future risks are discussed.


Subject(s)
Culex , Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Swine Diseases , Animals , Humans , Australia/epidemiology , Encephalitis, Japanese/epidemiology , Encephalitis, Japanese/prevention & control , Public Health , Swine , Swine Diseases/epidemiology
11.
Vector Borne Zoonotic Dis ; 22(11): 553-558, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36354965

ABSTRACT

Background: The emergence or re-emergence of several orthobunyaviruses (order: Bunyavirales; family: Peribunyaviridae), including Cache Valley virus (CVV) and Oropouche virus, warrants the development and evaluation of candidate live-attenuated vaccines (LAVs). Ideally, these vaccines would elicit long-lasting immunity with one single immunization. Materials and Methods: Since the deletion of two virulence factors, NSs and NSm, has been shown to attenuate the virulence phenotype of orthobunyaviruses, phleboviruses, and nairoviruses, genetic manipulation of the viral genome is considered an effective strategy for the rational design of candidate LAVs for bunyaviruses across multiple families. In addition, the deletion of Rift Valley fever virus NSs and NSm genes has been shown to reduce transmission by mosquitoes. Results: In this study, the ability of a CVV mutant lacking the NSs and NSm genes (2delCVV) to replicate in intrathoracically injected Aedes albopictus was compared with the parental wild-type CVV (wtCVV) 6V633 strain. In contrast to the robust replication of wtCVV in injected mosquitoes, the multiplication kinetics of the 2delCVV mutant was reduced by more than a 100-fold. Conclusion: These results suggest that the deletion of NSm and NSs genes is a feasible approach to rationally design candidate orthobunyavirus LAVs that are highly attenuated in mosquitoes and, therefore, pose little risk of reversion to virulence and transmission.


Subject(s)
Aedes , Bunyamwera virus , Rift Valley Fever , Rift Valley fever virus , Viral Vaccines , Animals , Vaccines, Attenuated , Kinetics , Rift Valley fever virus/genetics , Virus Replication
13.
Vector Borne Zoonotic Dis ; 22(6): 301-302, 2022 06.
Article in English | MEDLINE | ID: mdl-35724317

Subject(s)
Pets , Zoonoses , Animals , Humans
14.
Viruses ; 14(5)2022 05 07.
Article in English | MEDLINE | ID: mdl-35632727

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that led to the unprecedented COVID-19 pandemic exemplifies how a lack of understanding and preparedness for emerging viruses can result in consequences on a global scale. Statements that SARS-CoV-2 could not be transmitted by arthropod vectors were made without experimental support. Here we review laboratory-based research, field studies, and environmental studies to evaluate the potential for the virus to be transmitted either biologically or mechanically by arthropods. Based on these data, we conclude that transmission by arthropods is highly unlikely to play a significant epidemiological role in the transmission of SARS-CoV-2.


Subject(s)
Arthropods , COVID-19 , Animals , Humans , Pandemics , SARS-CoV-2
15.
NPJ Vaccines ; 7(1): 39, 2022 Mar 23.
Article in English | MEDLINE | ID: mdl-35322047

ABSTRACT

The envelope (E) protein of flaviviruses is functionally associated with viral tissue tropism and pathogenicity. For yellow fever virus (YFV), viscerotropic disease primarily involving the liver is pathognomonic for wild-type (WT) infection. In contrast, the live-attenuated vaccine (LAV) strain 17D does not cause viscerotropic disease and reversion to virulence is associated with neurotropic disease. The relationship between structure-function of the E protein for WT strain Asibi and its LAV derivative 17D strain is poorly understood; however, changes to WT and vaccine epitopes have been associated with changes in virulence. Here, a panel of Asibi and 17D infectious clone mutants were generated with single-site mutations at the one membrane residue and each of the eight E protein amino acid substitutions that distinguish the two strains. The mutants were characterized with respect to WT-specific and vaccine-specific monoclonal antibodies (mAbs) binding to virus plus binding of virus to brain, liver, and lung membrane receptor preparations (MRPs) generated from AG129 mice. This approach shows that amino acids in the YFV E protein domains (ED) I and II contain the WT E protein epitope, which overlap with those that mediate YFV binding to mouse liver. Furthermore, amino acids in EDIII associated with the vaccine epitope overlap with those that facilitate YFV binding mouse brain MRPs. Taken together, these data suggest that the YFV E protein is a key determinant in the phenotype of WT and 17D vaccine strains of YFV.

17.
ILAR J ; 61(1): 18-31, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33951733

ABSTRACT

The study of many arthropod-borne pathogens requires high biosafety considerations, including the use of specialized facilities and equipment for arthropod containment. Mosquito- and tick-borne viruses such as yellow fever, West Nile, and Crimean Congo hemorrhagic fever viruses require facilities that are suitable for housing vertebrates. Multidisciplinary studies that incorporate the vector, vertebrate, and pathogens are essential for a complete understanding of the interactions between these transmission cycle components, especially if they aim to evaluate and model relative susceptibilities of different arthropods and vertebrates to infection and transmission between these. Under laboratory conditions, these studies can be relatively simple, for example, involving colonized arthropods, small animals, and attenuated viruses. Other studies are complex with large animals, high-biocontainment pathogens, and field-collected arthropods. These require a higher level of containment and special design considerations. Both of these types of experiments have their relative merits. A thorough understanding of the issues related to these types of studies and the benefits and drawbacks to using various challenge models will enable the researcher to develop realistic goals for various experiments. This review examines the varied issues that should be considered prior to starting these experiments and covers the basics from the procurement of various arthropods, rearing, high-containment facilities and operational issues specific to work with arthropods, types of infection experiments, and specific issues with arthropod and animal experiments in biosafety levels 3 and 4.


Subject(s)
Arthropods , Animals , Containment of Biohazards
18.
Am J Infect Control ; 49(10): 1252-1255, 2021 10.
Article in English | MEDLINE | ID: mdl-34273464

ABSTRACT

BACKGROUND: Disinfection of contaminated or potentially contaminated surfaces has become an integral part of the mitigation strategies for controlling coronavirus disease 2019. Whilst a broad range of disinfectants are effective in inactivating severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), application of disinfectants has a low throughput in areas that receive treatments. Disinfection of large surface areas often involves the use of reactive microbiocidal materials, including ultraviolet germicidal irradiation, chlorine dioxide, and hydrogen peroxide vapor. Albeit these methods are highly effective in inactivating SARS-CoV-2, the deployment of these approaches creates unacceptable health hazards and precludes the treatment of occupied indoor spaces using existing disinfection technologies. In this study, the feasibility of using dry hydrogen peroxide (DHP) in inactivating SARS-CoV-2 on contaminated surfaces in large indoor spaces was evaluated. METHODS: Glass slides were inoculated with SARS-CoV-2 and treated with DHP between 5 and 25 ppb for up to 24 hours. Residual infectious virus samples were eluted from three replicates at each time point and titrated in African green monkey VeroE6 cells. RESULTS: In comparison with the observed relatively high stability of SARS-CoV-2 on contaminated glass slides (control group), residual infectious titers of glass slides inoculated with SARS-CoV-2 were significantly reduced after receiving 120 minutes of DHP treatment. CONCLUSIONS: The accelerated decay of SARS-CoV-2 on contaminated glass slides suggests that treatment with DHP can be an effective surface disinfection method for occupied indoor spaces.


Subject(s)
COVID-19 , Disinfectants , Animals , Chlorocebus aethiops , Disinfectants/pharmacology , Disinfection , Humans , Hydrogen Peroxide/pharmacology , SARS-CoV-2
19.
Vector Borne Zoonotic Dis ; 21(8): 566-572, 2021 08.
Article in English | MEDLINE | ID: mdl-34077696

ABSTRACT

Borrelia burgdorferi sensu lato (s.l.) is the most common pathogen of medical significance transmitted by ticks of the family Ixodidae in Belarus. Human infection with B. burgdorferi causes Lyme borreliosis, most commonly referred to as Lyme disease. Currently, 20 species of Lyme disease-associated Borrelia and more than 20 relapsing fever-associated Borrelia species have been identified. These etiologic agents belong to the genus Borrelia in the family Spirochaetaceae. Genetically characterized isolates with specific sequences have proven that these pathogens are endemically transmitted in many European and Asian countries. In addition, joinpoint regression analysis is often applied to characterize infection trends over time and to identify the time point(s) at which the trend significantly changes. In this epidemiological investigation, joinpoint analysis was applied to investigate the temporal trend of B. burgdorferi s.l. infections in 4070 ticks collected between April and October 2012-2019. Detection of Borrelia species in ticks is an important tool to determine temporal and geographic distribution and abundance, and to predict the risk of Lyme disease to people in different regions. Our data provide a basis for further studies to determine the distribution and abundance of B. burgdorferi s.l. species in Belarus.


Subject(s)
Borrelia burgdorferi Group , Borrelia , Ixodes , Lyme Disease , Animals , Borrelia/genetics , Lyme Disease/epidemiology , Lyme Disease/veterinary , Prevalence , Republic of Belarus/epidemiology
20.
Vector Borne Zoonotic Dis ; 21(3): 200-207, 2021 03.
Article in English | MEDLINE | ID: mdl-33434100

ABSTRACT

For effective control of vector-borne diseases and control of nuisance-biting insects, it is important to know which species are present and their relative abundance. In this study, we report data from a State-supported mosquito surveillance program in Kyiv, Ukraine's capital city. The surveillance identified 29 different species: 24 Culicines and 5 Anopheline species. Culicine mosquitoes included 17 in the genus Aedes, 3 Culex, 3 Culiseta, and 1 Mansonia species. The relative abundance of each genera was consistent in years 2014, 2015, and 2016; namely Aedes>Culex>Anopheles. In 2017, Aedes and Culex mosquitoes were approximately the same, predominating over Anopheles. A declining trend in the numbers of mosquitoes collected from 2013 to 2017 has not only several potential explanations, including increased urbanization and more effective control, but also may reflect changes in surveillance efforts.


Subject(s)
Aedes , Anopheles , Culex , Culicidae , Animals , Mosquito Vectors , Ukraine
SELECTION OF CITATIONS
SEARCH DETAIL
...